If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-2x-17=0
a = 4; b = -2; c = -17;
Δ = b2-4ac
Δ = -22-4·4·(-17)
Δ = 276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{276}=\sqrt{4*69}=\sqrt{4}*\sqrt{69}=2\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{69}}{2*4}=\frac{2-2\sqrt{69}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{69}}{2*4}=\frac{2+2\sqrt{69}}{8} $
| 9+4t=4t+15 | | 2x+4=-3x-5 | | 3(5(8k+7)+4)+1=120k+118 | | 8x-5+2x=25 | | 2.2x^2-6.1x-2.2=−3.6 | | 4(8-x)-32=98-5(3x+24) | | 2y+1.6/ 0.8=30/ 2.5 | | r5-6=- | | 7p^2+28=0 | | 8(v-3)=-6v+18 | | 6 =3+5(y–2) | | 3x-2(x+3)=4x7 | | 1/4(24-20x)=3+-20x | | 2.7x-1.5=4.2 | | 4w+3w+6w-5w+w-7w+w=111 | | 1/4(24-20x)=3+-5x | | 5+5i=6+2i | | 1/4(12-20x)=3+-20x | | 1/2p-8=13 | | 6=+5(y-2) | | 21x+25x-x=1260 | | 9x+3=5x+19} | | 20-(3h)=2 | | 8x+6=8 +x | | x+3=5x+19} | | 4.43(3x)+3.43x=66.88 | | 2x+22=4(x+#) | | (6x-4)-8=(17-x)-8 | | 15w+6-12w=-29 | | 14-7x+x=14-8x | | 2x+6+7x-3=9x+5-4-x | | X+9x+11x-20=110 |